
Originally Posted by
Joey T
You cannot transfer weight on your vehicle by braking, turning or accelerating. As long as you don't count your ego on the passenger seat sliding around.
Load, on the other hand, can most certainly be transfered.
It may not seem like it after reading through this thread but I really don't have any ego. I'm a student of everything and love nothing more than gaining a deeper understanding of any given subject. In this case I've chosen what I believe to be an excellent teacher. A few friends that do what he does have also shed some light on the subject. These guys aren't professors of physics they are engineers and scientists running countless real world tests and virtual simulations. A prof can tell you what he would do but these guys show you what they've done. Would you rather read a book on track driving or ride shotgun with Randy Pobst? We're talking about the real world here as viewed from behind a helmet visor not from a lecture hall.
Load is the correct term but it is often referred to as weight, weight transfer, weight jacking, etc.. The terminology is definitely different in the paddock. I've never heard a driver or chief use the term load transfer. Lots of things are misnamed like the proportioning valve. Such is life.
-----------------------
You guys aren't arguing with me but James Walker Jr.. Take a little look at his bio. Maybe he doesn't have the experience or knowledge that you guys possess but I know he's a hell of a lot smarter than I am. Although qualifications are not always indicative of talent, I'm going to go out on a limb here and say that he probably knows a little something or two.
James Walker, Jr.
StopTech Consultant
James Walker, Jr. is currently the supervisor of vehicle performance development for brake control systems at Delphi Energy & Chassis. His prior professional experience includes brake control system development, design, release, and application engineering at Kelsey-Hayes, Saturn Corporation, General Motors, Bosch, and the Ford Motor Company. Mr. Walker created scR motorsports consulting in 1997, and subsequently competed in seven years of SCCA Club Racing in the Showroom Stock and Improved Touring categories.
Through scR motorsports, he has served actively as an industry advisor to Kettering University in the fields of brake system design and brake control systems. In addition, Mr. Walker contributes regularly to several automotive publications focusing on brake system analysis, design, and modification for racing and other high-performance applications. He is a recipient of the SAE Forest R. McFarland Award for distinction in professional development/education. Mr. Walker has a B.S. in mechanical engineering from GMI Engineering & Management Institute.
To find out more about Mr. Walker and scR Motorsports, visit their website at
www.teamscR.com.
-----------------------
The ever-present weight transfer phenomenon
Let’s assume we have a 2500 pound car with a 50/50 static weight distribution. If we are only concerned with the vehicle at rest, it’s easy to determine the weight on each wheel. We just need to find some scales and weigh it. The sum of the front corner weights is equal to the front axle weight (1250 pounds), and the sum of the rear corner weights is equal to the rear axle weight (also 1250 pounds). The weight of the vehicle is of course equal to the sum of the two axle weights (our original 2500 pounds), and this weight can be thought of as acting through the vehicle’s center of gravity, or CG. Figure 1 sums it up nicely.
Note that when at rest, there are no horizontal (left or right) forces acting on the vehicle. All of the forces are acting in a vertical (up and down) direction. But what happens to the vehicle when we start to apply forces at the tire contact patch to try to stop it? Let’s find out.
During braking, weight is transferred from the rear axle to the front axle. As in cornering where weight is transferred from the inside tires to the outside tires, we can feel this effect on our bodies as we are thrown against the seat belts. Consequently, we now need to add several more arrows to our illustration, but the most important factor is that our CG now has an deceleration acting on it.
Because the deceleration force acts at the CG of the vehicle, and because the CG of the vehicle is located somewhere above the ground, weight will transfer from the rear axle to the front axle in direct proportion to the rate of deceleration. In so many words, this is the effect of weight transfer under braking in living color.
This deceleration force is a function of a mechanical engineer’s most revered equation, F=ma, where F represents the forces acting at the contact patches, m represents the mass of the vehicle, and a represents the acceleration (or in our case, deceleration) of the vehicle. But enough of the engineering mumbo-jumbo – just have a look at these additional factors in Figure 2.
n Figure 3 (the beginning of what we call a “fishbone diagram” – more on this later), we see how our 2500 pound vehicle with 50/50 weight distribution at rest transfers weight based upon deceleration. Under 1.0g of deceleration (and using some typical values for our vehicle geometry) we have removed 600 pounds from the rear axle and added it to the front axle. That means we have transferred almost 50% of the vehicle’s initial rear axle weight to the front axle!
FIGURE 3.
At this point, the brake system we so carefully designed to stop the vehicle with a 50/50 weight distribution is going to apply too much force to the rear brakes, causing them to lock before we’re getting as much work as we could out of the front brakes. Consequently, our hero is going to get that white-knuckled ride we talked about earlier because he creates more tire slip in the rear than the front, and it’s going to take longer for him to stop because the front tires are not applying as much force as they could be.
So what influences brake bias?
If we look at the equations we have developed, we see that all of the following factors will affect the weight on an axle for any given moment in time:
· Weight distribution of the vehicle at rest
· CG height – the higher it is, the more weight gets transferred during a stop
· Wheelbase – the shorter it is, the more weight gets transferred during a stop
We also know from fundamental brake design that the following factors will affect how much brake torque is developed at each corner of the vehicle, and how much of that torque is transferred to the tire contact patch and reacted against the ground:
· Rotor effective diameter
· Caliper piston diameter
· Lining friction coefficients
· Tire traction coefficient properties
It is the combination of these two functions – braking force at the tire versus weight on that tire – that determine our braking bias. Changing the CG height, wheelbase, or deceleration level will dictate a different force distribution, or bias, requirement for our brake system. Conversely, changing the effectiveness of the front brake components without changing the rear brake effectiveness can also cause our brake bias to change. The following table summarizes how common modifications will swing bias all over the map.
Bookmarks